Matlis reflexive and generalized local cohomology modules
نویسندگان
چکیده
منابع مشابه
Tame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملExtension functors of generalized local cohomology modules and Serre subcategories
In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملSome Properties of Generalized Local Cohomology Modules
Let R be a commutative Noetherian ring, a an ideal of R, M and N be two finitely generated R-modules. Let t be a positive integer. We prove that if R is local with maximal ideal m and M ⊗R N is of finite length then H t m (M, N) is of finite length for all t ≥ 0 and lR(H t m (M, N)) ≤ ∑t i=0 lR(Ext i R (M, H m (N))). This yields, lR(H t m (M, N)) = lR(Ext t R(M, N)). Additionally, we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2009
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-009-0077-4